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Laser pulses that enhance the predissociation reaction of NaI are theoretically studied based on a local control
method. Two control schemes corresponding to two time regimes, one of subpicoseconds and one of a few
picoseconds, are considered. For subpicosecond control, the pulse is designed to induce the Tannor-Rice
pump-dump scheme, in which an intrapulse pump-dump process is predicted. The created wave packet has
a high velocity to accelerate the nonadiabatic transition because of the Landau-Zener mechanism. On a
longer time scale (several picoseconds), we employ a two-step control scheme. First, we use a variational
procedure to determine the target wave packet that has the shortest lifetime at a given time. Then we calculate
the control pulse to shape this target by a backward time propagation technique. Numerical results show that
the wave packets generated by the control pulses are effective for accelerating the predissociation of NaI.

1. Introduction

Application of femtosecond spectroscopy to NaI photodis-
sociation dynamics enabled direct observation of a wave packet
motion around a transition-state region.1-5 These pioneering
works stimulated experimental and theoretical studies on the
control of NaI photodissociation using ultrafast tailored pulses.6-9

One attempt6 was to control the branching ratio between two
channels of photodissociation products. The relevant potential
energy surfaces (PESs) for this control involve ground-state ionic
and covalent states as well as a higher lying neutral state in the
diabatic representation. The former two potentials interact with
each other around their crossing, which leads to the ground and
excited adiabatic states. The first excited adiabatic state is
unstable because it is nonadiabatically coupled to the ground
state. Thus, the wave packet created on the first excited PES
predissociates to the ground state to form ground-state Na and
I atoms. On the other hand, the PES of the higher lying neutral
state corresponds asymptotically to the product of the excited-
state sodium atom Na*. In the experiment by Herek et al.,6 a
pump pulse prepares a wave packet on the first excited PES
(Na+I product state), and then a control pulse partially removes
this evolving wave packet to the highest PES (Na*+I product
state). Since the control pulse is tuned to cause the second
transition at a particular internuclear distance, change in the
delay time between the two pulses can alter the branching ratio.
They showed that an appropriate choice of the delay time
achieved an Na/Na* branching ratio of about five.

The control scheme used in the study by Herek et al. relies
on the fact that the localized wave packet is excited to the third
state at a position which is specified by the frequency of the
control pulse. Thus, a wave packet with a narrower spatial
distribution can improve the energy resolution and is more
efficiently promoted to the highest state, which results in high
selectivity. For wave packet shaping, Wilson’s group theoreti-
cally predicted and then experimentally observed that negatively
chirped pulses can squeeze the spatial distribution width of an
incoming (quasi) bound wave packet of I2 molecules.10-12

Recently, Bardeen et al.8 applied these ideas to NaI photodis-

sociation control. They generated a localized wave packet on
the first excited PES using a negatively chirped pump pulse
and then irradiated a Fourier transform-limited second pulse with
an appropriate delay time to improve the branching ratio of the
photodissociation products. Although their numerical simulation
showed that the negatively chirped pump pulse enhanced the
selectivity at 0 K, this effect was considerably diminished by
thermal distribution at 1000 K and the latter result was
confirmed experimentally. For a wave packet with sufficient
outgoing momentum, Tang and Rice9 recently pointed out that
a positively chirped pulse sharpens its spatial distribution more
efficiently than a negatively chirped pulse.

In this study, we design control pulses that accelerate the
predissociation of NaI based on a local control method.13-21

Generally, in polyatomic molecules, predissociation competes
with other processes such as IVR or with other relaxation
processes. Thus, it is important to analyze how to accelerate
the predissociation reaction using a simple molecule such as
NaI. For this purpose, we consider two control schemes,
corresponding to two time regimes. One of them is based on
the Tannor-Rice pump-dump13,22-24 scheme for a subpico-
second time regime. In few-picoseconds control, we employ a
two-step control method in which pulses generate a wave packet
consisting of short-lived vibronic states in the predissociation
well.25,26 For this purpose, a backward time-propagation tech-
nique developed in our previous paper is applied to shaping
this nonstationary target.21

Using a model diatomic system with three PESs, a similar
control scheme based on the optimal control theory13,27-33 was
studied by Gross, Neuhauser, and Rabitz.27 In this model, the
lowest bound state is radiatively coupled to two excited repulsive
states which interact with each other as a result of a nonadiabatic
coupling. Starting with an initial wave packet on one of the
excited states, optimal control theory is used to calculate the
control pulses that dissociate the molecule through one of the
dissociation channels.

In section 2, we briefly summarize our local control method.
Our numerical procedure and the potential parameters of NaI
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are also introduced. In section 3, we present calculations of local
control pulses based on the above-mentioned two control
schemes.

2. Theory

A. Local Control Pulse.20,21Consider a molecule interacting
with a time-dependent electric fieldE(t), through an electric-
dipole interaction, whose Hamiltonian is given by

whereHM, Vt, andµ are a molecular Hamiltonian, an interaction
Hamiltonian, and an electric dipole moment operator, respec-
tively. This molecular system obeys the Schro¨dinger equation

We first introduce a target operatorW, which gives a
maximum expectation value when a molecule reaches an
objective state. Then the optimal control pulse is determined
so as to maximize the expectation value at a control timetf,
while minimizing the pulse energy. Mathematically, the optimal
control pulse thus leads to an extremal value of the following
objective functional:

where the second term represents the penalty due to the pulse
energy. Here, the positive constantA weights the significance
of it. The constraint originating from the Schro¨dinger equation
(eq 2) is included through the time-evolution operator. Equation
3 can be written as

If we assume that the integrand in eq 4 is given by a known
function of time,g(t), then

and we can therefore determine the pulse shape locally in time.
This is our basic idea behind the design of a local control pulse.21

Since the functiong(t) specifies the path in the functional space
a priori, our control pulse satisfies the equationδJ ) 0, although
it cannot be simply equated with the necessary condition of an
optimal control pulse.

Here, we are concerned with the special case where the
function g(t) is chosen as

This path requires that the penalty due to the pulse energy should
be canceled by the increase in the target expectation value. In
this case, we obtain the condition of a commutation relation

or more correctly speaking

Thus, eq 5 is reduced to

Since the solutionE(t) ) 0 is allowed only in the trivial case
of starting out in the objective state, the local control pulse is
expressed as

In the present study, we restrict ourselves to this special case
and use eq 9 to design the control pulses.

The approximate solution, eq 9, can be interpreted from
another viewpoint, which directly connects it with an optimal
solution. Recently, Zhu et al.34-36 proposed a novel rapid
convergent algorithm to efficiently solve the control equations
derived from the same objective functional as eq 3. If we assume
a null electric field as a zero-order solution (initial guess), then
we can obtain eq 9 at a first iteration step of their calculation
scheme. Thus, eq 9 can be regarded as the lowest-order iterative
solution to the optimal control problem. Since their algorithm
generally shows a very rapid convergence behavior, we may
say that eq 9 gives a good approximate solution in a wide range
of applications.

Finally, we emphasize again that there is a restriction
originating from the commutation relation eq 7a when we use
eq 9 to design a control pulse. This condition prevents us from
achieving nonstationary objectives with the direct application
of eq 9. To overcome this difficulty, we showed that an
appropriate choice of a target operator together with the
backward time-propagation technique can make it possible to
control nonstationary states such as wave packet dynamics.21

In the present study, we employ this technique to design a
control pulse that generates target wave packets.

B. Numerical Calculation. The molecular HamiltonianHM

is written as the sum of a nuclear kinetic energy operator,T̂n,
and an electronic part,Ĥel

whereĤel includes the kinetic energy of electrons, electron-
electron interactions and electron-nuclei interactions. For
numerical calculation,37-39 we introduce a diabatic basis set
{|d(R)〉} in which the quantum numberd specifies the diabatic
electronic state, andR in the parentheses indicates its parametric
dependence on nuclear coordinates. The Schro¨dinger equation
expanded in terms of the basis{|dR〉 ) |d(R)〉|R〉; |R〉 is an
eigenvector of the nuclear coordinate} is given by

since the matrix element of the nuclear kinetic operator has a
form of

Here,φd(R,t) ) 〈dR|ψ(t)〉 represents a nuclear wave packet on
thedth diabatic state. The matrix elementVdd1(R) is defined by

where Ĥel(R) is the electronic operator in the coordinate
representation of nuclei. The matrix element of the transition
moment operatorµdd1(R) is defined by an expression similar
to eq 13. To numerically integrate eq 11, we divide the

Ht ) HM + Vt ) HM - µE(t) (1)

ip
∂

∂t
|ψ(t)〉 ) HM|ψ(t)〉 -µ E(t)|ψ(t)〉 (2)

J[E(t)] ) 〈W(tf)〉 - 1
pA∫t0

tfdt[E(t)]2 (3)

J[E(t)] ) ∫t0

tfdt{ d
dt

〈W(t)〉 - 1
pA

[E(t)]2} + 〈W(t0)〉 (4)

d
dt

〈W(t)〉 - 1
pA

[E(t)]2 ) g(t) (5)

g(t) ) 0 (6)

[HM, W] ) 0 (7a)

〈ψ(t)|[HM, W]|ψ(t)〉 ) 0 (7b)

E(t){E(t) - iA 〈ψ(t)|[W, µ]|ψ(t)〉} ) 0 (8)

E(t) ) -2AIm{〈ψ(t)|Wµ|ψ(t)〉} (9)

HM ) T̂n + Ĥel (10)

ip
∂

∂t
φd(R,t) ) ∫dR1 〈R|T̂n|R1〉φd(R1,t) +

∑
d1

[Vdd1
(R) - µdd1

(R)E(t)]φd1
(R,t) (11)

〈dR|T̂n|d1R1〉 ) 〈R|T̂n|R1〉δdd1
(12)

Vdd1
(R) ) ∫ dR1 〈dR|Ĥel|d1R1〉 ) 〈d(R)|Ĥel(R)|d1(R)〉 (13)
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Hamiltonian into kinetic and potential operators according to
the split-operator+ FFT (fast Fourier transform) scheme.37,39-42

The potential couplings due to diabatic interactions and optical
transitions are calculated using the Pauli matrix.27 When we
need a wave packet on anath adiabatic electronic state|a(R)〉,
we can obtain it using a transformation function37 Λda(R) )
〈d(R)|a(R)〉

The adiabatic potentialVa(R) and{Λda(R)} are determined by
the eigenvalue equation

whose coefficient matrix is given by the diabatic potential
elements{Vdd1(R)}.

In this paper, we adopt a two-electronic-surface model that
consists of ground-state ionic{|di(R)〉} and covalent states
{|dc(R)〉} (in a diabatic representation). Their potential param-
eters were taken from ref 39, although they were originally
published in refs 43-45. The PESs are illustrated in Figure 1.
To avoid artificial reflection of a wave packet at a boundary,
we add an optical potential on each potential. Our control
pulses are designed to interact with NaI only when the wave
packets are around the Franck-Condon region with the lowest
state. Thus, the matrix elements of the dipole operator are
assumed to be independent of the nuclear separation, and its
value was chosen as 1.0 Debye. We use the calculation range
of R ∈ [Rmin ) 1.0 Å, Rmax ) 23.0 Å] with 2048 grid points
and a time grid size of∆t ) 2.0 × 10-2 fs. The time- and
frequency-resolved spectrumS(ω,t) of a control pulseE(t) is
calculated by

using the Blackman window functionH(τ - t, Tw). This function

is given by

with time resolutionTw when |τ| e Tw/2, and is set to zero
when |τ| g Tw/2.

To numerically check the features of the potential energy
surface (PES) adopted here, we calculate the excited population
and dissociation probability when NaI is excited by a 60 fs
Gaussian pulse.6 This pulse has a fixed peak intensity of 3.0×
109 V/m, while its central frequency is changed from 28000
cm-1 to 38000 cm-1. In our calculation, wave packet compo-
nents on the covalent PES that have nuclear separation larger
than RD ) 11.0 Å are regarded as dissociation components,
Na+I (Figure 1). Since the diabatic potentials cross each other
around a nuclear separation of 6.9 Å, the nonadiabatic interaction
can be negligible beyond the distanceRD. Figure 2 shows the
population excited from the ground state and the dissociation
products created through the first passage of the wave packet
at the curve crossing. For the sake of normalization, the
dissociation probability is given by dividing the dissociation
components by the excited population. We can see that the
excited population increases and then decreases as a function
of frequency of the excitation pulse, reflecting the magnitude
of the Franck-Condon factors. On the other hand, an increase
in the excitation energy monotonically raises the dissociation
probability. This is because a pulse with a higher frequency
can generate a wave packet with a higher velocity at the crossing
point that accelerates the nonadiabatic transition, i.e., predis-
sociation. In Figure 2, this Landau-Zener mechanism is
confirmed by the agreement between the calculated results and
those fitted by the Landau-Zener formula.46

3. Results and Discussion

A. Pump-Dump Excitation Scheme.The Landau-Zener
predissociation mechanism46 suggests that a wave packet with
a higher velocity can cause nonadiabatic transitions more
efficiently and can accelerate the predissociation. As shown in
Figure 2, however, the optical transition is limited by the
restriction because of the Franck-Condon factors, which makes

Figure 1. Potential energy surfaces (PESs) for NaI. The solid (dotted)
lines represent the diabatic (adiabatic) PESs, whose parameters are taken
from ref 39. The diabatic potentials cross atRc ) 6.93 Å. When the
wave packet components on the covalent diabatic state have a nuclear
separation larger thanRD ) 11.0 Å, they are regarded as dissociation
products.

φa(R,t) ) ∑
d

Λ*da(R)φd(R,t) (14)

∑
d1

Vdd1
(R)Λd1a

(R) ) Va(R)Λda(R) (15)

S(ω,t) ) |∫-∞

∞
dτH(τ - t, Tw)E(τ) eiωτ|2 (16)

Figure 2. The excitation population (triangles with dotted line) and
dissociation probability (circles) as a function of photon energy of the
pulse. The definition of the dissociation probability is given in the text.
The excitation pulse has an envelope function of a 60 fs Gaussian with
a peak intensity of 3.0× 109 V/m. The solid line shows the dissociation
probability fitted to the Landau-Zener formula using least- squares
fitting.

H(τ, Tw) ) 0.42+ 0.50 cos(2π
Tw

τ) + 0.08 cos(4π
Tw

τ) (17)
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it difficult to generate this packet using a simple one-pulse
excitation. To overcome this difficulty, we adopt a pump-dump
excitation scheme,13,22-24 which is illustrated in Figure 3. In
this scheme, a first pump pulse (pulse 1) generates a wave packet
on the excited PES. When the excited packet moves down the
PES and reaches an appropriate region, it is transferred back to
high vibrational states in the ground PES by a dump pulse (pulse
2). This packet oscillates within the ground PES with a large
amplitude. When this packet reaches the inner turning point, it
is pumped up to the excited PES again by a second pump pulse
(pulse 3). Since a packet that has a large amplitude at a short
nuclear distance can have large Franck-Condon factors with
high vibrational states in an excited PES, a newly formed packet
can possess a higher velocity at the curve crossing than a packet
created by the first pump pulse.

According to this control scheme, we construct the following
target operatorW. Before doing so, we introduce vibronic states
{|iV〉}, which are vibrational eigenstates in the ground PES and
are obtained by diagonalyzing the molecular HamiltonianHM.
The electronic parts of these states are well-characterized by
the ionic state, and we therefore denote them as{|iV〉} with a
vibrational quantum numberV. Since the first pump and dump
pulses are well-separated from the second pulse in time, we
use the target operator of

for 0 e t e 100 fs and

for 100 fse t e 140 fs. Here, we do not specify the states with
a quantum number greater than 9 since it is hard to optically
control such states because of the small Franck-Condon factors.
In eq 19, HM is a molecular Hamiltonian, whose energy is
measured in units of cm-1. Corresponding to this choice of
energy unit, the weight factors{wV} are also measured in units
of cm-1. The units for electric fields are set to V/m and are
adjusted by an appropriate choice of units for the amplitude
parameterA in eq 9. In eq 18, the weight factors are chosen as

w0 ) -150 cm-1, w1 ) 0 cm-1, andwV ) 200 cm-1 (V g 2),
and in eq 19, they are set towV ) 6300 cm-1 - εv, whereεv is
an energy eigenvalue of the state|iV〉. The threshold energy,
6300 cm-1, is introduced to avoid populating the low-energy
states on the excited PES. For the amplitude parameter,A )
9.94× 107 andA ) 5.27× 106 are used for the time ranges of
0 e t e 100 fs and 100 fse t e 140 fs, respectively.

The calculated control pulse is shown in Figure 4, in which
the average nuclear distance of the packet in the ground state
is given in the inset. The first pump and the dump pulses form
one pulse, which causes pump and dump processes sequentially
in time. Since these processes occur at a slightly different nuclear
separation, they have slightly different transition frequencies.
In this case, the dumping requires a lower frequency than does
the pumping, and the pulse is therefore a negatively chirped
pulse.27,47-51 The time- and frequency-resolved spectrum in
Figure 5 clearly shows that the pulse is one of linear chirping.
This chirping mechanism can be understood on the basis of the
semiclassical description of the wave packet motion.50,51 The
numerical results show that the packet created by this control
pulse has a 530 cm-1 higher average vibrational energy than

Figure 3. Schematic illustration of a pump-dump control. The solid
lines with arrows indicate the first pump (1), dump (2), and second
pump (3) processes. The thin lines trace the wave packet motion on
each PES.

W ) ∑
V)0

9

|iV〉 wV 〈iV| (18)

W ) HM + ∑
V)0

9

|iV〉 wV 〈iV| (19)

Figure 4. Designed pulses as a function of time. The first pulse around
t ) 25 fs corresponds to the first pump and dump processes (intra-
pulse pump-dump mechanism). The second pulse aroundt ) 128 fs
transfers the wave packet in the ground PES to the excited state. The
temporal peak of the latter pulse coincides with the time when the packet
reaches the inner turning point. This is indicated by the arrow in the
inset which shows the averaged position of the packet as a function of
time.

Figure 5. Time- and frequency-resolved spectrum (eqs 16 and 17) of
the first pump and dump pulses in Figure 4. The time-resolution of the
window function is chosen asTw ) 50 fs. The dotted line with an
arrow indicates almost linear chirping.
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the initial state. To semiquantitatively interpret this, we solve
the Newton equationmdV/dt ) F0, wherem is a reduced mass,
V is a velocity of the center of the packet, and the forceF0 is
approximated by-dVii(R)/dR|R0 with an equilibrium distance
R0.52 If we assume thatV(t ) 0) ) 0 at the excitation time and
estimate the pulse temporal width atτ ) 5 fs, then the kinetic
energy gained through the classical motion is given by∆T )
(F0τ)2/2m ) 550 cm-1 which agrees with the numerical result.
Since in our system, the excited PES has a steep slope around
the Franck-Condon region, the intrapulse pump-dump process
efficiently generates a wave packet with a large amplitude in
the ground-state PES.

According to the next pump-dump process, the wave packet
is excited to the upper PES again when it reaches the inner
turning point with about a 100 fs time lag after the first pulse.
The timing of this second pump pulse is closely correlated with
the packet motion, as shown in the inset of Figure 4. The energy
of the resulting packet is so high that about 10% of the packet
directly dissociates to form Na+ and I- ions. To see how much
this control scheme can enhance the dissociation probability
defined in Figure 2, we compare it to that in the case of a 60 fs
pulse with a central frequency of 31250 cm-1 (absorption
maximum). The dissociation probability is 2.84 times larger than
that of the latter. As can be seen in Figure 2, the 60 fs pulse
with a central frequency of 38000 cm-1 can achieve almost the
same dissociation probability as that of the control pulse.
However, the former optical transition is nearly forbidden
because of the negligibly small Franck-Condon factors, and
only a very small fraction of population is therefore excited by
this pulse. Contrary to this, the calculated control pulse excited
41% of the population. Thus, it is concluded that the pump-
dump control scheme can considerably accelerate the predis-
sociation reaction within 100 fs.

In the above calculation, the local control method showed
the intrapulse pump-dump excitation process to generate a
wave packet with a large amplitude. It should be emphasized
that this is obtained without employing physical intuition.
Experimentally, the importance of the intrapulse pump-dump
process has been demonstrated by Shank’s group53,54 in dye
molecules. Since we saw the same mechanism in a very different
system, the intrapulse mechanism can be regarded as a common
excitation technique for creating various wave packets and for
controlling other molecular processes. In fact, such examples
were recently reported by Cao, Wilson, and co-workers.50,51 In
one of the papers,50 they proposed a new population inversion
scheme, named molecularπ-pulse, by combining a positive
chirp effect with adiabatic passage technique.

B. Control Scheme for a Longer Time Scale.If we are
concerned with a predissociation yield on a longer time scale,
e.g., a few picoseconds, the control scheme based on the
Landau-Zener mechanism does not always offer effective
means. This is because the packet with a higher energy has a
longer oscillating period and has fewer chances to pass the curve
crossing compared to that with a lower energy. Thus, we have
to adopt another control scheme to improve the dissociation
yield in several picoseconds. For this purpose, we must consider
interference effects to create a wave packet with the shortest
lifetime in order to accelerate the dissociation yield.

Our scheme consists of two parts, as shown in Figure 6. In
the first step, we determine the target wave packet that gives
the maximum product yield at a given timet ) tP. In the second
step, we design the control pulse that generates this target packet.
If we assume that a target packet|ψ(tf)〉 ) |ψf〉 is prepare by a
control pulse at timet ) tf, then the survival probabilityS
(remaining in the bound states) attp is given by

where the free propagator is defined by

and the projectorB for the bound components is expressed as

Since we are now aiming at minimizing the survival probability
S to enhance the predissociation at timetP, we can determine
the target packet according to a conventional variational
procedure. The minimization of survival probability is equivalent
to the maximization of dissociation probability; however, we
employ the former target to avoid dealing explicitly with the
optical potential. Before proceeding with our calculation, it
should be noted that the target packet|ψf〉 is generated by a
control pulse in the second step, and it must therefore be
optically connected with the initial state. This leads to the
constraint that the target packet is within a subspace of optically
accessible states specified by a projectorP:

Under this constraint, we can derive the following eigenvalue
equation from eq 20

In our model, the nonadiabatic interaction is so weak that the
vibrational states in the excited adiabatic PES{|a2 V〉, V ) 0, 1,
2, ‚‚‚} offer an appropriate basis to represent the projectorP.
By this choice of the basis, we have

Figure 6. Schematic illustration of two-step control in a longer time
(a few picoseconds) regime. The control pulse excites the initial packet
[(a) t ) t0] to shape the target packet [(b)t ) tf], which is determined
to give the maximum dissociation product at timetP [(c) t ) tP]. The
wave packet propagates freely for the time intervaltP - tf. In our two-
step control scheme, these processes are calculated inversely in time
(see the text for details).

S)
〈ψf|U0

†(tP,tf)BU0(tP,tf)|ψf〉
〈ψf|ψf〉

(20)

U0(tP,tf) ) exp[- i
p
HM(tP - tf)] (21)

B ) ∫Rmin

Rmax|iR〉dR〈iR| + ∫Rmin

RD |cR〉dR〈cR| (22)

P|ψf〉 ) |ψf〉 (23)

P U0
†(tP,tf)B U0(tP,tf)P|ψf〉 ) λP|ψf〉 (24)

P ) ∑
V)Vmin

Vmax

|a2 V〉〈a2 V| (25)
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whereVmin and Vmax are determined by the magnitude of the
Franck-Condon factors. That is, we only include vibrational
states that have Franck-Condon factors greater that 0.007,
whereby they are set toVmin ) 146 andVmax ) 205. Substituting
eq 25 into eq 24, all of the matrix elements are calculated by
the time propagation method starting with each vibrational state.
We then solve eq 24 by a diagonalization method to obtain the
target packet which is the eigenstate with the minimum
eigenvalue.

In Figure 7, the vibrational-state distributions of the targets
for several time intervals oftP - tf are shown by solid lines.
For comparison, those of the eigenstates with the largest survival
probability are shown by dotted lines. Comparing the results,
we can see that the vibrational states exhibit different distribution
patterns; i.e., in each figure of Figure 7, the vibrational states
included in one of the packets do not appear in the other. This
can be understood on the basis of the lifetime of the vibrational
states employed here (eq 25). The vibrational state with a short
lifetime considerably predissociates before timetP, and it
therefore makes only a small contribution to the matrix elements
of the bound-state projectorB. Thus, the target packet with the
minimum eigenstate mainly consists of these short-lifetime
states. Contrary to this, the eigenstate with the maximum
eigenvalue includes only the vibrational states with a long
lifetime. Another factor determining the target shape is the
number of times the target packet has a chance to pass the curve
crossing with an outgoing momentum. Thus, the eigenstates with
large survival probabilities tend to include high vibrational states
with a long lifetime in order to prolong the oscillating periods,
and their phases are adjusted to have inner momenta. To see
the latter trend of the phase effects, we consider the target packet

given in Figure 7(a). Figure 8(a) shows the absolute value of
this target packet as a function of nuclear separation. Since this
packet has an eigenvalue ofλmin ) 0.859, 14.1% of it dissociates
within tP - tf ) 1500 fs after the optical preparation. For
comparison, the packet with the largest eigenvalue (λmax )
0.998) is shown in Figure 8(b). This eigenvalue means that
99.8% of the packet created at timetf can survive without
dissociation fortP - tf ) 1500 fs. The target packet in Figure
8(a) localizes aroundR ∈ (2.6 Å, 9.5 Å) and has a positive
average momentum. We see that the largest component is
designed to pass the crossing point just aftertf. Contrary to this,
in Figure 8(b) the distribution of the packet with the longest
lifetime extends far beyond the crossing point, and the packet
starts to move toward the inner potential region after the
preparation timetf. Thus, its shape is determined to avoid passing
the crossing point withintP - tf ) 1500 fs. In general, the
lifetime and phase effects compete with each other, and the
vibrational-state distributions of the target packets have different
patterns, as can be seen in Figure 7.

We now move on to the second step in designing the control
pulse for generating the target packet. To deal with the
nonstationary target state in the local control method, we have
to utilize a backward propagation technique.21 In this method,
the pulse shape is determined so as to transfer the target packet
to the lowest state inversely in time. Then we substitute the
calculated pulse back to the Schro¨dinger equation forward in
time to ascertain whether it really controls the dynamics. There
are two methods of backward propagation treatment.21 One of
them starts with the target packet and maximizes the yield of
the lowest state. In the other, we adjust the target population
and find the pulse that completely transfers the population to
the lowest state. In both cases, the achievement obtained in
backward propagation can be proven to be the same as that in
forward propagation because of the time reversibility of the
Schrödinger equation. In this study, we adopt the latter method
and employ the 1:1 superposition state of the target packet and
the lowest state instead of the pure target packet. This means
that the calculated pulse controls 50% of the population. That
is, the control pulse transfers half of the population from the

Figure 7. Vibrational-state distributions of the targets for several time
intervals, (a)tP - tf ) 1500 fs, (b)tP - tf ) 2000 fs, and (c)tP - tf )
2500 fs. Those of the packets with the largest survival probabilities
are also shown by dotted lines.

Figure 8. Absolute values of the wave packets as a function of
internuclear separationR for (a) the target packet and (b) the packet
with the largest survival probability at the time intervaltf - tP ) 1500
fs [Figure 7(a)].
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lowest state to the target packet, and the other 50% of the
population remains in the lowest state. We numerically checked
that the phases of two states in the superposition state do not
change the shape of the control pulse.

In the backward propagation, the target state is the lowest
state, which is represented by|iV)0〉 using the notation
introduced in eq 18. Thus, we use the target operator that has
the form of

where the weight factors are chosen asw0 ) 1.0 andwV ) -0.1
with Vmax ) 7. The latter negative weights are a penalty that
prevents the pulse from populating the vibrationally excited
states. To shape the packets in Figure 8(a) and (b), the amplitude
parameters are chosen asA ) 1.7 × 1010 andA ) 2.0 × 1010,
respectively. Figure 9 shows the calculated control pulse for
the target packet in Figure 8(a), which is plotted forward in
time. Its time- and frequency-resolved spectrum with a parameter
of the window functionTw ) 300 fs is given in Figure 9(b).
This pulse includes several frequencies, each of which corre-
sponds to the vibrational components in the target packet. The
intensity of each component is determined by the population
of the vibrational states included in the packet and their Franck-
Condon factors. Corresponding to several transition frequencies,
the control pulse has a complicated modulated structure as a
function of time (Figure 9a). Its time- and frequency-resolved
spectrum in Figure 9(b), however, has a simple form reflecting
the vibrational-state distribution given by the solid line in Figure
7(b). The control achievement is quite high, and the absolute
square of the overlap integral between the target packet and
the optically created packet is 0.982. The control pulse for

generating the wave packet in Figure 8(b) is given in Figure
10. This pulse has a similar structure to that in Figure 9. From
the time- and frequency resolved spectrum in Figure 10(b), we
can see that this pulse is also designed to excite the specific
vibrational states which are included in the packet. The absolute
overlap integral in this case also has a high value of 0.985. These
two numerical examples clearly show that the local control
method can be used to design pulses that generate specific wave
packets. Since the wave packets treated here are chosen so as
to have the shortest or the largest lifetime within given time
intervals, we can control the yield of the dissociation product.
That is, we can accelerate the predissociation reaction by
optically shaping an appropriate target packet.

Here, we would like to point out previous theoretical
works25,26 that treated the lifetime of the predissociating states
in NaI and compare those results with our results of variational
calculation (eq 24). Using a semiclassical method, Chapman
and Child25 calculated lifetimes including rotational motion.
Meier et al.,26 on the other hand, used a quantum mechanical
wave packet calculation, and they determined the lifetime
distribution from the energy spectrum of the asymptotic
components of the wave packet. These theoretical works were
stimulated by the experiments conducted by Zewail’s group,5

in which long time recurrence (∼10 ps) was observed in
femtosecond pump-probe signals. Both theoretical calculations
succeeded in interpreting the observed spectra in terms of the
different distributions in short- and long-lifetime states. Thus
our results in Figure 7 are consistent with those of previous
works, and our diagonalization method is therefore useful for
determining a lifetime distribution.

Finally, we discuss the limitation of our method. Our control
scheme consists of two parts. In the first step, we determine
the target packet using eq 24, and then we design the control
pulse. Strictly speaking, these two processes cannot be separated.

Figure 9. Calculated control pulse for shaping the target packet in
Figure 8(a). The control pulse as a function of time (a) and its time-
and frequency-resolved spectrum (b). In (b), the time-resolution of the
window function is chosen asTw ) 300 fs.

Figure 10. Calculated control pulse for shaping the target packet in
Figure 8(b). The control pulse as a function of time (a) and its time-
and frequency-resolved spectrum (b). In (b), the time-resolution of the
window function is chosen asTw ) 700 fs.

W ) ∑
V)0

Vmax

|iV〉 wV 〈iV| (26)
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We should determine the best packet for accelerating the
predissociation under the influence of a pulse. This naturally
leads to a nonlinear equation with respect to the control pulse,
which is an optimal control method. On the time scale of several
picoseconds, however, it was found in the present study that
two-step approximation works well to control the predissociation
of NaI. Since the local control method is computationally less
expensive than the optimal control method, wave packet shaping
with the local control method offers a convenient way to control
reaction dynamics such as predissociation of NaI.

4. Summary

We have theoretically studied quantum control of the pre-
dissociation of NaI. A local control method was used for
designing control pulses that accelerate the predissociation. In
section 3A, a 100 fs pump-dump pulse was used to accelerate
the predissociation by utilizing a pump-dump control scheme.
It was shown that the intrapulse pump-dump process efficiently
created the wave packet with a large amplitude in the ground-
state potential well. In order to determine the control achieve-
ment within a short time, we must consider the dissociation
yield after the first passage of the wave packet at the curve
crossing. For this purpose, we introduced the dissociation
probability, which is defined as the dissociation yield divided
by the excited population. The control pulse yielded a dissocia-
tion probability about three times higher than that of a transform-
limited 60 fs pulse with a central frequency corresponding to
the absorption maximum.

In section 3B, a two-step control scheme was used to enhance
the predissociation on a longer time scale (several picoseconds).
The wave packet prepared by the control pulse at timetf was
chosen so as to maximize the dissociation yield at a given time
tP. For this purpose, we employed a conventional variational
procedure to obtain the packet with the shortest lifetime,
assuming there is free propagation between timetf andtP. This
target packet consisted of vibrational states with a short lifetime,
and their relative phases were adjusted to enhance the predis-
sociation. The local control method, together with the backward
time propagation technique, was applied to the shaping of this
target packet. For comparison, we also obtained the control pulse
that minimizes the dissociation yield. In both cases, the overlap
integrals between the target packet and the optically created
packet had a value of more than 98%. Thus, although separate
treatment of the two control steps restricts applications, it has
been shown that this approximated control scheme efficiently
enhances the predissociation reaction on a time scale of several
picoseconds.
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